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On trailing vortices: A short review
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Abstract

This paper reviews some mechanisms involved in the dynamics of vortices in fluid flows. The topic is first introduced by pointing out
its importance in aerodynamics. Several basic notions useful to appraise experimental observations are then surveyed, namely: centri-
fugal instabilities, inertial waves, cooperative instabilities, vortex merger, vortex breakdown and turbulence in vortices. Each topic is
illustrated with experimental or numerical results.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A lifting wing is conceived so as to deflect part of the
impinging flow momentum into a normal component. This
produces, by reaction, a normal force which is opposite to
this momentum component. As shown by the wind tunnel
experiment of Fig. 1, in the case of a finite wing, this pro-
duces trailing vortices. After the merger of different vortices
produced by the wing elements, a single pair of counter-
rotating vortices forms. The flux of momentum of this vor-
tex system is equal and opposite to the lift of the vortex
generator (here a complete aircraft). The same mechanism
holds in a jet deflected by a cross-flow, in which a vortex
pair also forms and conveys the vertical momentum of
the jet. In the two above cases, the trailing vortices are
associated to a momentum deflection which is due to the
work of the viscous and turbulent stresses taking place in
the wing boundary layer, in the case of the wing, or in
the jet mixing layer, in the case of a jet normal to a
cross-flow (shocks also contribute in supersonic regimes).
The corresponding energy is momentarily stored in a trail-
ing vortex system and could, in principle, be restored
before completion of the wake dissipation. In the case of
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an aircraft, this energy is equal to the work of the ‘‘induced
drag’’ or ‘‘vortex drag’’, which amounts to a third of the
total drag, typically. This means that a third of the power
delivered by the propulsion unit of an aircraft is used for
the lift and is momentarily stored in vortices. Once vortices
are formed, they last on a long distance and they may pro-
duce undesirable loads on structures or upset rolling
momentum on following vehicles. Aerodynamic applica-
tions, such as aircraft wake hazard alleviation (see Crouch
and Jacquin, 2005) or vortex breakdown control, have
stimulated researches on the prediction and/or the control
of these vortices. This paper gives an overview of these
findings. Its main objective is to draw attention on some
fundamental results which may be useful to analyse flows
dominated by vortices. The review begins with consider-
ations on the stabilizing/destabilizing effects of rotation
and/or curvature (see Section 2). Section 3 is devoted to
the stability properties of a vortex. In this section we detail
the mechanisms responsible for the persistence of trailing
vortices and we explain how this intrinsic stability may
be mitigated. A short discussion on vortex breakdown fol-
lows (see Section 4). Section 5 is devoted to the stability of
vortex systems and Section 6, to buoyancy effects in vorti-
ces. Every notion is exemplified with experimental and/or
numerical results. Problems common to the experimental
characterizations of trailing vortices are briefly discussed
in the last section.

mailto:jacquin@onera.fr


Fig. 1. Formation of a vortex pair downstream of a flapped aircraft
model: iso-values of the longitudinal vorticity obtained by LDV in four
different vertical planes downstream (b0 denotes the model span, Crouch
and Jacquin, 2005).
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2. The stability of rotating 2D flows

Persistence of the trailing vortices is intriguing. It may
be attributed to the stabilizing effects of rotation which
are discussed in this section. It is well known that rotation
may stabilize or destabilize a plane shear flow. It has been
shown (see Sipp and Jacquin, 2000) that a steady 2D
incompressible basic flow subject to rotation X is unstable
if there exists a streamline for which, at each point:

2ðV =Rþ XÞðW þ 2XÞ < 0; ð1Þ

where W is the vorticity of the streamline, R its local alge-
braic radius of curvature and V the local norm of the velo-
city. R > 0 if the flow is locally counterclockwise and
R < 0 if the flow is locally clockwise. Criterion (1) gives
a sufficient condition of centrifugal instability. It actually
generalizes a series of other criteria (see Sipp and Jacquin,
2000). If (1) is satisfied then the flow undergoes three-
dimensional short-wave centrifugal-type instabilities. Note
that two frame indifferent elements are involved in relation
(1). These are the total vorticity (W + 2X) and the total
angular velocity ðV =Rþ XÞ. Equivalence between rotation
and streamline curvature lies in the latter term which
groups the frame rotation X and the ‘‘curvature rotation’’
V =R.

Relation (1) may be used to evaluate the local stability
of any curved flow fields. The underlying theory is an
asymptotic development of the linearized Euler equations
in the limit of very short-wave perturbations. This asymp-
totic method is scale independent and it describes also the
production turbulence when it is applied to the mean
streamlines of a turbulent flow (in this case, the underlying
physics is identical to that of the rapid distortion theory of
turbulence, see e.g. Cambon and Scott, 1999).

In the absence of frame rotation, relation (1) reduces to

2W � V =R < 0. ð2Þ
Following this relation, a rectilinear shear flow ðjRj ! 1Þ
is neutral (no centrifugal instability) and curvature destabi-
lizes the flow when the sign of its vorticity is opposite to
that of the curvature rotation. Applying this criterion to
a 2D cylindrical flow gives the condition U(r) =
2W(r)V(r)/r < 0 for instability, where V(r) is now the
orthoradial velocity, the vorticity being W(r) = d(rV)/rdr.
This is the classical Rayleigh criterion for centrifugal insta-
bility (Rayleigh, 1916):

r2ðrÞ ¼ �UðrÞ > 0. ð3Þ
U(r) is known as the Rayleigh discriminant and r(r) is the
temporal amplification rate of the centrifugal instabilities.
A fluid particle displaced in a flow region satisfying (3) will
be expelled outward or inward due to an excess or a deficit
of angular momentum C(r) = rV(r). This enables for in-
stance to make a clear distinction between a vortex, which
verifies C(r ! 1) = C0, where C0 is a constant, and a swirl,
where C(r ! 1) = 0. In the periphery of a swirl, angular
momentum vanishes and the sign of vorticity W changes.
Consequently, this flow is always unstable. In opposition,
the angular momentum of an equilibrium 2D vortex is
monotonous, so this flow is centrifugally stable. However,
a vortex may be forced to become unstable through develop-
ment of a local angular momentum (or circulation) over-
shoot. Examples will be given in the next section.

To conclude, a 2D vortex is a stable two-dimensional
curved flow. Its non-viscous stability is a direct conse-
quence of the monotonous distribution of its angular
momentum. One must remind that the mechanisms of sta-
bilization/destabilization by curvature or rotation which
have been described in this section cannot be properly
restored with a one- or two-equations turbulence model
(they may only be mimicked by empirical corrections to
these models). Full Reynolds stress closure models, which
explicitly account for streamline curvature, are recom-
mended. This is particularly important for computing flows
containing trailing vortices (see e.g. Zeman, 1995).
3. The stability of a vortex

A model often used to fit experimental data is the
Lamb–Oseen vortex:

V ðrÞ ¼ C0

2pr
ð1� e�r2=a2Þ. ð4Þ

This is actually a solution of the 2D-Navier-Stokes equa-
tions, with a the vortex radius and C0 = limr!12prV(r),
the vortex circulation. The Reynolds number is Re = C0/
m. The flow (4) verifies U(r)P 0. Following (3), this means
that it is free from centrifugal instability.

Now, this vortex may become unstable if we add an
axial flow. A canonical model in this case is the Batchelor
vortex. The Batchelor vortex, or q-vortex, corresponds to
the superposition of (4) with a Gaussian axial field:

UðrÞ ¼ U 0 � DUe�ðr=aÞ2 . ð5Þ
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The flow is controlled by the swirl number:

q ¼ C0

2paDU
� 1:56

V 0

DU
; ð6Þ

where V0 = max{V}, and by the Reynolds number
Re = V0a/m. Free trailing vortices are usually of the wake
type, with sign ��� in (5), because they integrate the viscous
losses along the mean streamlines. Stability properties of
the Batchelor vortex have been extensively investigated
(see Ash and Khorrami, 1995 for a review). Three families
of instabilities have been identified. The first family are
non-viscous short-wave instabilities due to stretching of
vorticity perturbations aligned with the local shear. These
instabilities are well described by the asymptotic study of
Leibovich and Stewartson (1983) which leads to a neces-
sary stability criterion generalizing (3). This criterion reads:

r2ðrÞ ¼
2V r dV

dr � V
� �

V
r

� �2 � dV
dr

� �2 � dU
dr

� �2� �

r dV
dr � V

� �2 þ r dU
dr

� �2 > 0. ð7Þ

The 2D criterion (3) is retrieved by putting dU/dr = 0 into
(7). Distributions of r2 are shown in Fig. 2. When r2 is po-
sitive, the flow is locally unstable and r corresponds to the
temporal amplification rate of the instabilities. Fig. 2 shows
that for q = 1.5 the core of the vortex is entirely stabilized
(r2 < 0, "r); it is fully unstable (r2 > 0, "r) for q = 0.7. For
intermediate values, e.g. q = 1, a stable buffer layer where
r2 < 0 is surrounding the flow and prevents radial propaga-
tion of perturbations. The instability modes in the core
take the form of ‘‘ring-modes’’ which exhibit a structure
concentrated in an annular region located around the
streamline where r2 is maximum. As said above, these
modes develop for q 6 1.5 and above this value the rota-
tion transforms all the perturbations into neutral
oscillations.

A second instability family is the viscous modes evi-
denced by Khorrami (see Ash and Khorrami, 1995). These
modes occur for q < 1.2, and their growth rates are several
orders of magnitude smaller than those of the inviscid
modes occurring in this range. Consequently, they are unli-
Fig. 2. Short-wave stability criterion for a Batchelor vortex: (squared)
amplification factor as a function of the radius for different swirl number q
(Jacquin and Pantano, 2002).
kely to play any role in the dynamics of vortices. The third
family is that of the viscous ‘‘centre-modes’’ recently
described by Fabre and Jacquin (2004). These modes exist
for any Reynolds numbers and swirl numbers, including
q > 1.5. So they should be present in any trailing vortex.
However, these modes are found to be concentrated in
the very center of the vortex (Fabre and Jacquin, 2004).
They could participate to a global ‘‘vortex meandering’’
of the vortex, but are probably unable to promote a turbu-
lence diffusion of the vortex core.

So, the inviscid short-wave instabilities described above
(the ‘‘ring modes’’) are likely dominating the small scale
dynamics of a 3D vortex. Indications on the non-linear
development of these perturbations have been provided
by direct numerical simulations (DNS). These DNS show
that at the end of the linear regime, the perturbations satu-
rate and decay without modifying significantly the vortex.
This remarkable property was first described by Ragab
and Sreedhar (1995). It is illustrated in Fig. 3 by results
of Jacquin and Pantano (2002) who considered the case
q = 1, Re = V0a/m = 2000. Fig. 3 shows the temporal evo-
lution of the volume integral of the turbulence energy
k(r, t), hkiðtÞ ¼ 2p

R1
0

rkðr; tÞdr, and that of the swirl num-
ber q(t) calculated using relation (6). Snapshots of vorticity
are also shown. Quasi-random turbulence fluctuations were
introduced initially. The results for the small times fit the
stability theory (perturbations in Fig. 3(b) are ring modes
and the slope of hki(t) in the linear regime corresponds to
the theoretical growth rate). At the saturation turbulence
is filling the vortex. Later on, turbulence decays. The swirl
q(t) in Fig. 3(a) increases and cross q = 1.5. This indicates
that the flow returns into a stable regime. Detailed results
show that turbulent transport concentrate on the mean
axial component of the velocity (decrease of DU), the tan-
gential component V0 being almost unchanged. The results
of this anisotropic transport is an increase of q(t) (Jacquin
and Pantano, 2002).

An experiment which illustrates the above phenomeno-
logy but which also shows its limit is provided by Philips
and Graham (1984). The experiment is based on the use
of a split wing with a narrow central cylindrical body (see
Fig. 4(a)). This apparatus produces a single vortex whose
core may be manipulated by blowing a jet for instance.
Fig. 4(b) and (c) shows radial profiles of the angular
momentum (or circulation) rV. Fig. 4(b) corresponds to
the case of a jet such that q � 1.8 (using (6)) in the first
measurement section (z/c = 45). The flow verifies q > 1.5
so it is linearly stable (no ring mode). The measurements
confirm that the vortex remains frozen downstream. How-
ever, when the jet becomes stronger, as in Fig. 4(c), one
finds that q � 0.4 in the first measurement section
(z/c = 45). Thus the flow is strongly unstable and it is sub-
jected to a vigorous turbulent diffusion. The velocity excess
DU quickly decays (not shown here) and the vortex core
width a increases (note that at z/c = 45 the vortex width
in Fig. 4(c) is already much larger that in the previous
case). The non-viscous shear instabilities described above



Fig. 3. DNS of a Batchelor vortex q = 1. (a) Volume integrated turbulent kinetic energy hki and swirl number q versus time s = tV0/a0. Fluctuation of
vorticity at s = 1 (b), s = 2 (c), and s = 4 (d) (Jacquin and Pantano, 2002).
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Fig. 4. Jet/vortex experiment: vortex generator with blowing capacity (a),
circulation deduced from velocity measurements by hot wire in three
downstream sections – case of a weak jet (b), case of a strong jet (c).
Symbols: (.) z/c = 45, (j) z/c = 78, (m) z/c = 109 with c the wing chord
length. Radius is normalized by c (Philips and Graham, 1984; Jacquin and
Pantano, 2002).
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(the ‘‘ring modes’’) are likely responsible of a strong radial
transport of angular momentum and Fig. 4(c) shows that
this leads to a large circulation overshoot. In the region
where circulation decreases, the sign of vorticity changes
and centrifugal instabilities develop in accordance with
(3). The vortex width increases as the overshoot propagates
radially. A small amplitude overshoot was already detected
by Jacquin and Pantano (2002) in their DNS of the cases
q = 1. These authors showed that this was due to a break-
ing of the stabilizing region which confines the perturba-
tions within the core at higher swirl numbers (see Fig. 2).
Note at last that a temporal DNS such as that of Fig. 3
is based on the supposition that the flow is statistically
invariant along the flow axis. The rapid evolution of the
flow for smaller q may invalidate this hypothesis. A spatial
DNS would be required in this case.

To conclude, equilibrium vortices are likely stable and
laminar. Their non-viscous stability may be asserted by
application of available criteria and the viscous instabilities
that have been detected seem too weak or too ‘‘singular’’.
Even if we force it to be unstable, it goes back to a stable
regime, except for large enough changes in the axial
momentum (low enough swirl numbers). So, presumptions
on the laminar nature of this flow are numerous, but unfor-
tunately, it has never been possible to prove it without
ambiguity by way of experiments. This is due to technical
difficulties that will be commented in Section 7.



Fig. 5. Frequencies xr of the axisymmetric Kelvin waves in a Lamb–
Oseen vortex. Frequencies are normalized by the vortex rotation rate
X0 = C0/2pa

2, where C0 is the circulation, and a, the core radius (Fabre
et al., in press).
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4. Vortex breakdown

Vortex breakdown is a phenomenon to which one often
refers to when thinking about turbulence and vortices.
Among available reviews on the topic, there are Délery
(2001), Sarkpaya (1995) and Rusak and Wang (1996).
Indeed, the physics of breakdown is completely different
from that discussed above. It is related to the notion of criti-
cality. As advocated by Benjamin (1962, 1967), vortex
breakdown results from a transition from a globally stable
and supercritical flow supporting only downstream travel-
ling waves to a subcritical state supporting both upstream
and downstream propagating waves. If the flow is subcri-
tical, waves might transport energy upstream and disrupt
the flow. As pointed by Gallaire and Chomaz (2003), this
condition is close to an absolute/convective instability con-
dition (a base flow is said to be absolutely or convectively
unstable whether amplified disturbances increase in time
at any fixed station and extend to the entire domain of inter-
est or if such perturbations are transported downstream by
the flow and if only the base flow remains for large time in
any fixed frame). The complete phenomenon still escapes to
our understanding. Experimental investigations of confined
vortices in tubes (e.g. Tsai and Widnall, 1980) confirm that
vortex breakdown represents a transition from a supercrit-
ical to a subcritical flow. This is also the case for the flow on
a delta wing as illustrated below.

An important question indeed is the nature of the waves
which propagate along the vortices and which may parti-
cipate to breakdown. Any perturbation in a rotating flow
leads to propagation of dispersive waves, called inertia
waves. These waves are equivalent to the gravity waves
found in stably stratified flows. Those which propagate in
a vortex are named Kelvin waves and they play a funda-
mental role in the dynamics of vortices (see Saffman,
1992). The Kelvin waves in vortices have been extensively
described theoretically by following a standard procedure
which leads to linearize the Euler equations around a base
flow considering modal small perturbations of the velocity
and pressure of the type ðv; pÞ ¼ ðv̂; p̂ÞðrÞeiðkxþmh�xtÞ where
x = xr + ixi denotes a complex frequency, k is the axial
wave number and m, the azimuthal wave number. This
leads to an eigenvalue problem for x. This problem admits
a countable infinity of eigenvalues. A description of these
waves is made in Saffman (1992) for a Rankine vortex (con-
stant vorticity core). The case of the Lamb–Oseen vortex is
detailed in Fabre et al. (in press). For the vortex break-
down we may restrict the analysis to axisymmetric modes
m = 0 because they exhibit the largest propagation veloci-
ties (in the limit of small wave numbers). Results are shown
in Fig. 5 for the Lamb–Oseen vortex. The eigenvalues are
noted xm,n(k) where k and m are the axial and azimuthal
wave numbers (here we consider m = 0) and where the
absolute value of second index jnj is related to the number
of zeros of the eigenfunction (the higher the label, the more
radial oscillations the mode contains). The sign of n is used
to distinguish different families of waves. The frequencies
are made non-dimensional with the rotation rate of the
vortex center, X0 = C0/2pa

2.
Axisymmetric Kelvin waves form two families of

branches which propagate in opposite directions. The
mechanism responsible for this propagation has been
explained by Melander and Hussain (1994); and Arendt
et al. (1997) (see also Fabre et al., in press). The group
velocity dxr/dk, which corresponds to the slope of the dif-
ferent branches, decreases with the wave number, the fast-
est waves being on the branch x0,1 in the limit of long
wavelength (ka ! 0). The group velocity of this wave is
found to be dx0,1(k)/dk � 0.63C0/(2pa) which is almost
exactly equal to the maximum tangential velocity of the
Lamb–Oseen vortex. This means that energy of perturba-
tions propagates with a speed smaller but close to the max-
imum tangential velocity of the vortex, dx0,n(k)/dk < V0, a
property which also holds for other vortex models. This is
sufficient to understand that occurrence of breakdown
needs a tangential velocity component comparable to the
axial component. As an illustration, Fig. 6(a) shows an
hydraulic visualization of the phenomenon on a delta wing
with a swept angle u = 60� at incidence a = 20� (Werlé,
1982). Fig. 6(b) and (c) show the velocity component par-
allel to the vortex axis measured by LDV on a delta wing
with 70� swept angle at 30� of incidence in a wind tunnel
(Mitchell and Délery, 2001). Criticality is illustrated by
Fig. 6(d) and (e) which depict the axisymmetric Kelvin
waves deduced from a temporal stability analysis of the
base flow (U,V)(r) obtained from an azimuthal averaging
of the data of figures (b) and (c) (Renac, 2004). Compared
to Fig. 5, the axial flow leads to a Doppler shift of the
waves (in the simple case of a uniform convection at veloc-
ity U1, xr/k is transformed into xr/k + U1). Upstream of
the breakdown location, the flow is supercritical (all



Fig. 6. Vortex bursting on a delta-wing. (a) Hydraulic visualization on a
wing with a swept angle u = 60� and an incidence a = 20� (a) (Werlé,
1982). (b, c) Axial component U of the mean axial velocity normalized by
the free-stream velocity U1, measured by LDV in a vortex over a delta
wing with u = 70� and a = 30� for Re = U1c/m = 1.5 · 106 in two vertical
planes, X/c = 0.32 and X/c = 0.53, the busting being located at X/
c = 0.41, with c the wing chord length (Mitchell and Délery, 2001). (d, e)
Axisymmetric Kelvin waves obtained by a linear analysis of the velocity
field (U,V)(r) deduced from azimuthal averaging of the LDV results of
figures (b, c) (Renac, 2004).
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branches of Fig. 6(d) have a positive slope); downstream,
the flow is subcritical (presence of negative slopes in
Fig. 6(e)).

A crude criterion for breakdown thus amounts to con-
sider that the fastest waves travel at a speed c � V0. Criti-
cality then leads to consider the following non-dimensional
parameter:

qc ¼
V 0

U1 þ DU
¼ q

1:56

1

1þ U1=DU
; ð8Þ

where q is defined in (6). The flow remains supercritical
(free from breakdown) if qc is smaller than unity. The se-
cond identity shows that a supercritical vortex (qc < 1)
may remain locally stable with respect to short-wave invis-
cid instabilities (q P 1.5) thanks to the drift velocity U1 in
(8). By approximating the maximum tangential velocity by
V0 � C0/(2pa) one notes that given the circulation C0,
bursting condition critically depends on the core width a.
This may be used to get an estimation of core width mini-
mums. In the case of the vortices on a delta wing one may
consider C0 = U1sina · s(X) with sðX Þ ¼ 2X= tanu the lo-
cal span of the delta wing (u is the swept angle). The first
equality in relation (8) leads to

qc ¼
sin a
2p

sðX Þ
a

U1

U1 þ DU
. ð9Þ

For the data of Fig. 6(b) we have X/c = 0.32, DU/
U1 = 2.6, so that a/s(X)P 0.03 for qc 6 1: the vortex core
width in the supercritical region (before breakdown) is only
few percent of the span. An order of magnitude may be
also obtained for the trailing vortices behind a wing by
using for the load the elliptic law C0 = 2CzU0b0/(pAR)
(see any text books on aerodynamics) where Cz is the lift
coefficient, AR, the wing aspect ratio, b0, the wing span.
Typical values for a highly loaded wing (aircraft in landing
configuration) are AR = 7, Cz = 2. With this choice the
trailing vortices are free from breakdown (qc 6 1) if a/
b0 P 0.03U1/(U1 + DU). As trailing vortices are usually
of the wake type (DU < 0), a/b0 = 3% must be considered
as a minimum for a trailing wake vortex with no bursting.
This is compatible with known data.

So vortex breakdown is a global instability mechanism
by opposition to the local instabilities considered in the pre-
vious sections. Occurrence of a breakdown may be associ-
ated to possible propagation against the current of inertial
waves. Equilibrium trailing vortices are free form break-
down (vortices on a delta wing are not ‘‘trailing vortices’’)
and this imposes a minimum value to their core width.

5. The stability of vortex systems

Vortices in interaction are generally unstable with
respect to 3D perturbations. This will be explained now.
Two kinds of instabilities, referred to as �cooperative insta-
bilities�, are known to occur in vortex systems. The first
kind is characterized by long wavelengths, typically of the
order of the distances between the different vortices of
the wake. The most famous long-wave instability is the
Crow instability occurring in a pair of counter-rotating
vortices (Crow, 1970). Other forms of long-wave instabili-
ties occurring in multipolar wakes were also considered
(Crouch, 1997; Fabre et al., 2002), and may be investigated
using a vortex filament method described below. Long-
wave instabilities do not saturate and generally lead to a
reconnection of the different vortices. The second kind of
cooperative instabilities are characterized by short wave-
lengths, typically of the order of the vortex core radii. This
kind of instability was discovered simultaneously by Moore
and Saffman (1975) and Tsai and Widnall (1976). These
instabilities are expected to play an important role in the
mechanism of merging between co-rotating vortices (Le
Dizes and Laporte, 2002). These two types of instabilities
will be detailed now.
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When separations between the vortices are large com-
pared with their thickness and if we consider long wave
perturbations, a system of stability equations may be
derived by considering a set of parallel vortex filaments
with slight sinusoidal perturbations of their respective posi-
tions (see Crow, 1970; Crouch, 1997; Fabre et al., 2002).
The system evolves due to superposition of three effects:
(i) the straining experienced by each filament when dis-
placed by a perturbation from its mean position in the
velocity field induced by the other undisturbed filaments,
(ii) the self induced rotation of the disturbed filament and
(iii) the velocity field induced on the filament by the other
vortices when they are themselves perturbed from their
mean positions. Mechanism (i) is schematized in Fig. 7(a)
and (b) for the particular case of a pair of counter-rotating
vortices. It leads to amplification of the perturbations
whose polarization planes remain close to the extension
planes of the straining field. This mechanism is in balance
with the self-induction, mechanism (ii), which tends to shift
away the perturbation from these planes; as schematized in
Fig. 7(c), the Biot–Savart velocity field induced by the vor-
tex on itself, when it is sinusoidally displaced by mechanism
(i), leads to rotation of the vortex around its mean axis in a
direction opposite to that of the vortex core. One may also
explain this self induction effect as the result of the propa-
gation of particular asymmetric Kelvin modes m = ±1 (see
e.g. Fabre et al., 2002), so that this mechanism introduces a
dependence of the solution with respect to a measure of the
vortex core radius.

A first example of long-wave instabilities in a vortex sys-
tem is the Crow instability already mentioned. The Crow
instability develops in pairs of counter-rotating vortices
of circulation ±C0. Its characteristic time scale is
Fig. 7. Amplification of a deformed vortex by the strain in a pair of two
counter-rotating vortices of same strength: (a) side view, (b) front view. (c)
Self-induced rotation of a sinusoidally displaced vortex in a plane y = 0:
due to the curvature, the Biot–Savart velocity induced by the two vortex
sections normal to the two dotted lines, for instance, leads to displace-
ments of the vortex along directions ±y normal to the perturbed vortex
plane as indicated by the straight arrows. Note that the resulting self
induced rotation is opposite to the vortex core rotation.
s � 2pb2/jC0j (actually the inverse of the strain rate) with
b the vortex separation. It is responsible of the deformation
and break-up of aircraft contrails (see Fig. 8). A second
example of long-wave instabilities is shown in Fig. 9. This
corresponds to long-wave perturbations which develop in
the vortex system composed with two vortex pairs of oppo-
site signs, as sketched in Fig. 9(a). The vortex pairs may be
co-rotating (C1 > 0, C2 > 0) or counter-rotating (C1 > 0,
C2 < 0). This vortex configuration is used to model the vor-
tex wake of aircrafts: the outer vortex pair is that produced
at the wing tips and the inner one, by flaps and horizontal
tail planes. This problem has been recently investigated in
the context of researches on aircraft wake hazard allevia-
tion. The solution of the linear problem depends on C2/
C1 and on b2/b1. Fig. 9(b)–(e) shows, for the case (C2/
C1 = �0.3, b2/b1 = 0.3), the most amplified perturbation
at four different instants during one revolution of the inner
vortices around the outer ones. The amplification factor of
this perturbation is much larger than that of the Crow
instability obtained without the inner vortices. The towing
tank result shown in Fig. 9(f) confirms that this type of per-
turbation is effectively selected in a real four vortex wake
(see Bristol et al., 2004). Differences between the linear
solution Fig. 9(e), and the experiment, Fig. 9(f), are the
bending of the loops and burstings. These phenomena are
due to non-linearity. A premature break-up of aircraft
trailing vortices could be obtained by promoting this kind
of instabilities (see Crouch and Jacquin, 2005).

Let us consider now the short-wave instabilities. This
kind of instabilities results from the stretching of perturba-
tions whose wavelengths are of the order of the vortex core
radii. Fig. 10 shows results of a direct numerical simulation
of a co-rotating dipole of aspect ratio a/b = 0.2 for
Re = 5000 (Le Dizes and Laporte, 2002). Contrary to the
case of the counter-rotating vortex pair schematized in
Fig. 7, the strain is now rotating with the pair. Fig. 10(a)
shows the linear development of the short-wave perturba-
tion. For a/b = 0.2 the vortices are sufficiently close to
exchange their vorticity and this leads to the merger (see
Fig. 10(b)).

A very different example of flow involving short-wave
cooperative instabilities is shown in Fig. 11. This is a
Fig. 8. Development of the Crow instability in a contrail at two different
instants (Crow, 1970).



Fig. 9. Long-wave cooperative perturbation in a four-vortex system idealizing the wake of a wing equipped with flaps: (a) definitions of the four-vortex
system, (b–e) optimal perturbation obtained with the linear theory after one revolution of the inner vortex pair around the outer one (case C2/C1 = �0.3,
b2/b1 = 0.3, Fabre et al., 2002), (f) towing tank experiment for C2/C1 = �0.37, b2/b1 = 0.5 (Bristol et al., 2004). (f) Shows the perturbation which develops
after an elapsed time close to that corresponding to (e).
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mixing layer developing over a cavity at transonic regime
(see Forestier et al., 2003). In such a flow, an aero-acoustic
resonance leads to development of well defined 2D span-
wise vortices visible on the Schlieren picture in Fig. 11(b).
Thanks to the periodic nature of the flow, the velocity field
may be described by means of a conditional analysis (see
Fig. 11(c) and (d)). Looking to the random fluctuations
which are superposed to this coherent phase-averaged field
and which characterize small scale activity, one finds that it
develops in the centre of the vortices, see Fig. 11(d). This is
likely due to short-wave instabilities which develop in the
cores of the co-rotating vortices subjected to a mutual
straining (this straining is responsible for the elliptic shape
of the streamlines shown in Fig. 11(c)). Contrary to Fig. 10,
here, the vortices hit the downstream corner of the cavity
before the instability has time to grow sufficiently. In that
case, the vortices do not merge and an aero-acoustic loop
takes place.

To conclude, mutual straining of vortices may lead to
their rapid disorganization thanks to the development of
long-wave perturbations with wavelengths of the order
of the vortex separation. Perturbations with wavelengths
of the order of the vortex core radii also develop on the
same time scale. The long-waves may quickly put the vor-
tices in contact and the short-waves are responsible for the
merger phenomenon.

6. Density effects in vortices

In a rotating flow, centripetal acceleration plays the
same role as gravity in standard buoyancy problem. Conse-
quently, density variations in vortices may be a source of



Fig. 10. Iso-levels of the axial vorticity perturbation component in a direct
numerical simulation of a co-rotating dipole of aspect ratio a/b = 0.2 for
Re = 5000: (a) linear regime, (b) merger (Le Dizes and Laporte, 2002).

Fig. 11. The mixing layer over a cavity at transonic regime: (a) schematic,
(b) Schlieren picture of the mixing layer, (c) pseudo streamlines deduced
from a conditional analysis of LDV measurements, (d) iso-levels of the
variance of the random part of the fluctuating field (component hu02i=U 2

1).
Note that these fluctuations develops in the vortex core; this is likely due
to short-wave instabilities (Forestier et al., 2003).
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instabilities. This problem will be briefly commented here.
Fig. 12(a) depicts the analogy between an unstable non-
homogeneous shear flow under the action of gravity and
an unstable non-homogeneous swirling flow. It shows that
a heavy vortex core is unstable with respect to 2D pertur-
bations whereas a light one is stable. The stability of
non-homogeneous vortices have been investigated by
several authors, see a review in Sipp et al. (2005). Impor-
tant quantities are the Rayleigh discriminant, already
introduced in (3), and the parameter:

G2 ¼ � V 2

r
1

q
dq
dr

which corresponds, if dq/dr > 0, to the square of a buoy-
ancy frequency, and which is analogous to the classical
buoyancy frequency (or Brunt–Väisälä frequency), but
with gravity replaced by the centrifugal acceleration V2/r.
A critical value for this frequency is G2

w ¼ r
4

dV =r
dr (critical

Richardson number). Fig. 12(b) gives an overview of the
different type of instabilities which have been identified
for different values of G2. This graph is given here to illus-
trate the great complexity of this problem. The details are
given in Sipp et al. (2005). The regime G2 > 0 is particularly
interesting because it corresponds to vortices which are sta-
ble (U > 0) in the absence of density gradient. When density
is larger in the core, Rayleigh–Taylor (RT) instabilities de-
velop and may compete with centrifugal instabilities. The
RT instability mainly affects non-axisymmetric two-dimen-
sional eigenmodes (see Sipp et al., 2005). As we did in the
case of the Batchelor vortex in Section 3, it is interesting to
look the non-linear regime of these instabilities. DNS of a
Lamb–Ossen vortex with a heavy core dominated by RT
instabilities has been performed by Coquart et al. (2005).
It shows that these instabilities quickly saturate and leave
the mean vortex almost unchanged. This is illustrated in
Fig. 13. The case corresponds to a Lamb–Ossen vortex at
a Reynolds number Re = V0a/m = 10,000 with a Gaussian
density distribution in its centre (see Fig. 13(a)). The den-
sity on the axis is increased by 20% with respect to the den-
sity outside the vortex. The most amplified perturbation is
a m = 3 RT mode (see Fig. 13(a)). In Fig. 13(b), we enter
the non-linear regime: the flow exhibits the mushroom-like
patterns characteristic of the non-linear development of the
RT instability (Clark, 2003). In the late stage development
of the instability, these patterns are stretched in the azi-
muthal direction and subject to filamentation. Fig. 13(e)
shows that, contrary to flows where RT instabilities are
due to gravity, the stretching effects in the vortex quickly
damp the cascade of instabilities. The density perturbations



Fig. 12. (a) Analogy between unstable non-homogeneous shear flow
under the action of gravity (upper figure) and unstable non-homogeneous
swirling flow (lower figure). The grey levels sketch the density field which is
noted R. (b) overview of instabilities in the case where U(r) > 0 (see text for
the definition of the parameters, Sipp et al., 2005).

Fig. 13. Density q(r,h, t) at different times: (a) t = 0.16, (b) t = 11, (c)
t = 20.4, (d) t = 34.5, (e) variance of the density perturbation q02ðtÞ as a
function of time t; (f) tangential velocity V ðr; tÞ as a function of the radius
r for times corresponding to (a–d). The bar denotes an average in the axial
direction. The circle in (a–d) corresponds to the vortex radius (Coquart
et al., 2005).
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quickly dies out (see Fig. 13(e)) letting the vortex almost
unchanged (see Fig. 13(f)). Density variations effectively
destabilize a vortex, but the instabilities quickly saturate
and the density contrast is rapidly eliminated. The vortex
itself remains almost unaffected. Even if a lot remains to
do on this interesting subject the above results bring an
additional illustration of the persistence of vortices.

7. Measurement limitations

This is not easy to characterize vortices experimentally.
Conventional velocimetry techniques (LDV, PIV, hot-wire)
should nominally operate in a three-component mode in
order to characterize the dynamics discussed above. Such
measurements must provide axial and tangential mean
velocity profiles, lengthscales (core radii, vortex separa-
tions), variances of the velocity, power spectral densities
and, possibly, other two-point statistics. The difficulties
come from the small size of the vortices produced in the
laboratory and from their unsteady nature. These two
aspects are briefly discussed here.

Fig. 14(a) shows the structure of the vortices of Fig. 1 at
x/b0 = 5. The figure depicts the tangential velocity V (actu-
ally a cylindrical averaging of LDV measurements) for two
configurations, the flapped case shown in Fig. 1 and a clean
case (no flap). The lift coefficients are, respectively, Cz = 1.7
and Cz = 0.7. The free-stream velocity is V1 = 50 m s�1

and the Reynolds number based on the aerodynamic chord
(c � 66 mm) is Rec = 220,000. Transition was tripped on
the wings and on the fuselage. The properties of these pro-
files are detailed in Jacquin et al. (2003). One must note here
is that the ‘‘internal core’’ (or ‘‘viscous core’’) rotating as a



Fig. 14. (a) Tangential velocity V/V1 as a function of radius measured at
x/b0 = 5 in the left hand vortex of the model of Fig. 1, in a clean and high-
lift configurations (Jacquin et al., 2003). (b) Power density spectra of the
longitudinal velocity component obtained by translating a hot wire along
a vertical line in the vortex of the high lift case shown in Fig. 1. The power
spectra are multiplied by the frequency. The highest energy is obtained on
the vortex axis. Each curve corresponds to a displacement of Dz = 1 mm
(Dz/b0 � 2 · 10�3) with respect to the vortex axis.

Fig. 15. Characterization by PIV of vortex unsteadiness of two vortices
generated by flap and tip of a flapped wing: (a) two horizontal profiles of
the vertical velocity component from cuts in PIV results (solid lines) and
their approximations by the superposition of two Lamb–Oseen vortices
(dashed lines; the dotted circles materialize the Lamb–Oseen vortices, their
radius being proportional to the vortex radius a, see (4)), (b) distribution
of vortex centre points deduced from the approximation by two Lamb–
Oseen vortices (centres of the circles of (a)). The three different frames
(shifted one from the other) refer to different configurations of the same
model (using, respectively, 95, 298 and 100 PIV samples) in the same
region of the flow. The clusters on the left and right hand sides of each
frame correspond, respectively, to the wing tip and flap tip vortices
(Vollmers, 2001).
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solid body is very narrow, less than 1% of the span b0. It is
too small for instance to be described by the measurement
system (here a 3D LDV system, see Jacquin et al., 2003).
As for the velocity fluctuations, it is found that their energy
reaches its maximum in the center of the vortex. This is illus-
trated in Fig. 14(b) which shows the power spectral density
of the axial component of the velocity measured with a stan-
dard single wire probe displaced in the core of the high lift
vortex of Fig. 14(a). Energy is maximum when the hot wire
is in the centre. A small displacement from this position
leads to a sharp decrease of the energy. The same is found
in many vortices and this is not turbulence. Fig. 14(b) is
characterizing a global meandering of the vortex. It turns
out that vortices produced in experiments are never steady:
even when separation with other vortices is sufficiently large
and axial flow sufficiently weak for discarding the main
instability mechanisms discussed previously, one observes
that vortices are always subjected to random displacements
of small amplitudes. These are the random variations of the
mean field of Fig. 14(a) ahead of the fixed probe which lead
to Fig. 14(b). Vortex meandering is a universal phenome-
non which is still not understood. The first comprehensive
investigation of this problem is due to Devenport et al.
(1996). Meandering could result from a superposition of
several mechanisms as discussed in Jacquin et al. (2003).
Fortunately, there are cases where the source of fluctuations
may be readily attributed to instability mechanisms
described above. An example is provided in Fig. 15, where
the variations in the position of the vortices deduced from
PIV measurements exhibit a preferential orientation which
may be attributed, without ambiguity, to a cooperative
instability (see Vollmers, 2001).

8. Conclusions

The dynamics of trailing vortices has been discussed on
the basis of recent findings. Some important mechanisms
have been recalled and are recapitulated below.

• Rotating flows may be stabilized or destabilized. Theo-
retical works based on asymptotic linear methods have
provided useful stability criteria.

• An equilibrium trailing vortex is free from non-viscous
instabilities. Viscous instabilities have been detected
but they are weak or confined in the very centre of the
vortices.

• Non-viscous instabilities may be forced if we introduce a
jet or a wake. But these instabilities are usually transient
and decay quickly without modifying the vortex
significantly.
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• The above results are suggesting that trailing vortex are
laminar.

• Significant change must be however obtained when the
jet (or wake) is strong enough. In this case, the vortex
is subjected to a rapid diffusion thanks to propagation
of a front of centrifugal instabilities (circulation
overshoot).

• Vortex systems are subjected to cooperative instabilities.
Long-wave instabilities may lead to break-up of the sys-
tem and short-waves instabilities participate to the mer-
ger of the vortices.

• Density variations in the core may lead to Rayleigh–
Taylor type instabilities. Available results show that,
again, this instability quickly saturates and does not
affect the vortex.

• Trailing vortices in the laboratory have very narrow
cores.

• Large gradients and a general meandering of these struc-
tures make their experimental characterization particu-
larly difficult.
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